最新的游戏资讯
精彩的游戏攻略

中午健身科学吗?(上班族中午健身)

中午健身科学吗?((上班族中午健身))

#头条创作挑战赛#

总体来说,运动科学是支持午睡,不支持午后健身的。

但很多人下午和下班后没有时间健身。如果我们把这种诉求考虑进去,中午健身是可行但受到一定限制的,中午健身有好处也有坏处,对某些人适合,对某些人不适合。

本文列举的信息会告诉大家,是否中午健身,至少有三个方面可供参考。

一、中午是体温和体能的低谷

根据主流考古结论,人类的祖先起源于非洲。

在非洲炎热的稀树草原上,很多动物都会在午后打盹,甚至这个星球上大多数人都认为午后是一个适合休息和打盹的时间[1]:

  • 在针对大学生的大规模研究中,下午2点到下午4点容易瞌睡[1];
  • 在对成年人的早期研究中,Tune也发现午睡意愿在下午2点到4点之间达到高峰[2];
  • 在针对老年人的研究中,老年男性(70岁)的午睡高峰时间为下午1:34,老年女性的午睡高峰时间为下午2:56[3];
  • 对年龄在79岁或以上的45名老年受试者的观察发现,他们的平均午睡时间为下午2:36[4];
  • 布莱克等人的经典研究表明,午餐后在卡片分类之类的思考能力方面明显下降[5];
  • 在国际交通事故的荟萃分析数据中,午后也是事故高发的时间[6]。

    出乎绝大多数人意料的是,在马拉松比赛过程中,参赛选手都普遍睡午觉,更惊人的是时间平均长达几十分钟

  • Hurdiel等人报道[7],70%的跑步者在超级马拉松比赛中打盹,平均睡眠时间为23分钟;
  • Knechtle等人报道有57%的跑步者在超级马拉松比赛中打盹,持续时间从30分钟到175分钟不等[8];
  • Poussel等人报道28%的马拉松参赛者在比赛中至少午睡过一次,大多数人午睡时间在15到30分钟之间[9];

    虽然比较滑稽,但这些证据加在一起表明午睡或小睡倾向是一种普遍现象。有些人怀疑这是午餐造成的,但后来发现午餐不是唯一原因。

  • Colquhoun等人发现即使在没有吃饭的情况下,午后大脑运转减速/困顿的情况依然如此[10];
  • Craig等人进行了进一步研究证明即使吃低碳水的午餐,这种现象仍然存在[11];
  • Campbell和Zulley的放松研究中,完全休闲无工作的受试者即便不吃午餐,也仍然选择在午后的休息[12];
  • Carskadon和Dement等人证明,即使受试者有固定的日常活动,不知道一天中的时间,也不吃午餐,午餐后仍会出现体能和脑力的低谷[13];

    对于这种不管吃不吃午餐午后都会变得疲倦的现象,有些科学家提出了一些理论解释,如布劳顿等人提出了『12小时和24小时的双昼夜节律理论』[14];Lavi等人则在他的研究中证明了午后是人体的第二个“睡眠之门”[15],特别是后来Richardson等人观察到午后人体存在“M”型的慢波睡眠潜伏期[16]。

    对于这些现象的解释,Kleitman[17]和Colquhoun[18]等人的观点具有划时代的意义,他们认为一天中人的睡眠节律是与体温波动联系在一起的。

    这似乎说得通,因为生理学表明,睡眠是副交感神经主导的,而拮抗它的交感神经会通过促进脂肪燃烧的方式引起发热,导致体温轻微升高,主要通过分泌脂解激素[19] [20] [21]导致脂肪分解、能量消耗增加[22] [23] [24] [25]引起的——这些在我之前前的文章中已经举证过了。

    因此,Kleitman和Jackson等人的论文大胆的提出可用温度计来预测人的运动表现[26];后来的研究也倾向于支持人体睡眠节律与体温节律的关系存在12和24小时节律[27] [28]。

    根据Timo等人对年轻受试者的测试结果,人的体温在午后会轻微下降(红),在下午5点后会明显上升(蓝)[29]。

    图1

    由此图上可见,夜间10点到凌晨1点人的体温会明显下降,很显然夜间一般人是不适合从事剧烈体育运动和身体对抗的,所以也没有谁在半夜12点到凌晨3点之间去健身房深蹲大重量。从体温变化趋势上,我们得到的健身安排启发是:

  • 午后有体温的小幅度下降,这意味着午后不是最佳的运动时间;
  • 同时,这种下降并不是特别剧烈,这可能意味着从事非大强度的运动是可行的;
  • 具体到午后健身的安排上,一般不建议从事哪些强度很大的训练,比如1RM85%以上的深蹲、硬拉等;
  • 而那些强度稍微低一点的训练,比如二头、肩等,应该是没问题的。

    二、中午健身与晚上

    力量训练者都很重视神经。在运动生理类的研究中,研究者们往往把神经和肌肉视为一个整体,称之为『神经肌肉系统』——Neuromuscular system。

    因为力量/肌肉训练从本质上说是神经支配肌肉活动的结果,人的肌肉不能自己收缩[30] [31] [32],只能在神经系统释放的生物电刺激下收缩[33] [34] [35] [36]。

    老铁们都知道,生物电从轴突到肌纤维膜、再到肌浆网[37] [38],刺激钙离子释放[39],导致横桥构象变化[40] [41] [42],释放横桥上ATP袋内ATP水解的能量[43]并拖动粗细肌丝相对滑动,从而实现肌肉收缩[44],这些是运动科学的基本知识。

    图2

    在力量训练中,神经系统要控制非常多的肌肉,产生大量高强度的生物电流,所以在疲劳状态下进行训练,效果不佳,而午睡(睡眠)助于缓解神经系统的疲劳。

    怎么缓解呢?

    比如已经证明的『冲刷』。在睡眠中,脑脊液通过动脉进入脑,驱动间质液的对流,从脑间质中去除哪些具有生物毒性的代谢废物,并将它们沿着静脉排出[45] [46];同时在慢波睡眠中,第三和第四脑室中的脑髓流动方向改变、也起到潜在的大脑中代谢废物清除的作用[47]。

    因此许多实验证明了午睡对于神经系统的重要性[48] [49],包括增强记忆力[48] [50] [51] [52]、改善认知和大脑功能[53] [54] [55]、改善白点的嗜睡和精力不足[56] [57] [58] [59] [60]等;一些世界著名的公司,如谷歌、美国宇航局等,都为他们的员工提供工作休息区或专用的午睡家具[61] [62]。

    那理论上午睡后一定力量/肌肉训练状态更好?运动科学研究对这个问题的结果存在矛盾:

    有些研究发现午睡后运动表现更强,如25-45分钟的午睡提高了在穿梭跑成绩等运动表现[63] [64]、跳跃成绩[65]、峰值跳跃速度提高[66]、短跑成绩和反应力[67] [68]、冲刺跑成绩[69] [70];

    也有研究不支持午睡后运动的好处,如Petit等人的研究中小睡20分钟并不提高运动表现[71]、Pelka等人发现在是否午睡组之间的身体表现(速度或最大功率)没有差异[72]。

    这些矛盾的其中一种解释是,午睡对人的训练状态的影响,似乎在很大程度上取决于这个人前一天夜里的夜间睡眠情况:如果夜间睡眠充足,午睡与否对运动表现没有明显改变;如果夜间睡眠不足,则这种改善非常明显:

  • Anthony等人观察发现,夜间睡眠平均7.5小时的跑步者,不论是否午睡,跑步耐力(力竭时间)都没有明显改善;而那些夜间睡眠平均6.4小时的跑步者,在午睡后,跑步耐力有明显改善[73];
  • Amornpan等人报告,睡眠剥夺3小时的大学生足球运动员,反应变慢、短跑功率成绩下降,而午睡在部分程度上逆转了短跑功率的下降,显示出腿部力量的恢复[74];
  • Brotherton等人观察了7.5小时睡眠、3小时睡眠、3小时睡眠加60分钟午睡的三组举重者,在力量表现方面,1小时午睡组与7.5小时常规睡眠组没有显著区别,但明显好于3小时睡眠组[75];
  • Hammouda[76]和Romdhani[77]等人观察到受试者在前一夜只睡了4.5小时的前提下,如果睡了90分钟,则冲刺跑的功率输出和疲劳指数发生显著改善;
  • 布兰奇菲尔德等人[78]研究发现,对跑步者来说,之前的夜间睡眠睡眠少于7小时时,午睡对他们的疲劳时间有更大的影响。

    所以回过头来看,为什么有些运动员午睡后运动成绩提高,有些不提高,是因为有些与动员因为压力(繁重的比赛、长期的过度训练、过于密集的日程安排)等因素长期睡不好。

    虽然拐零说她每天睡10小时,但有证据表明,奥运运动员经常睡眠时间为6.5-6.8小时[79] [80];一个包含了37个研究的大型系统综述表明,运动员普遍抱怨有睡眠问题,根据匹兹堡睡眠质量指数(PSQI),他们的睡眠质量普遍差——这很可能解释了为什么多数睡眠干预研究发现运动员午睡后运动能力显著提高。

    图3

    总之,我们在考虑『今天中午应该健身还是午睡』的时候,要看人,看这个人昨晚和过去一段时间内夜间的总体睡眠质量、总体睡眠充足程度。

    三、中午健身应该参考基因和健康状况

    睡眠的能力取决于基因,主流的教材已经表明,基因不只是传宗接代的工具,人依靠基因来活着,人依靠基因来进行新陈代谢。

    基因/表达方面的差异,造成了在睡眠方面的广泛的个体差异:有些人仅需要5个多小时的睡眠就精力充沛,有些人需要8-9小时,还有些人更多。撒切尔夫人就属于天生的短睡眠者,据说每天只睡4个小时精力充沛[81] [82]。

    类似的还有我认识某个亲戚的母亲,63岁了,每天精力充沛,只睡3-4小时左右,白天从不困,也从不午睡。她从不运动,居然能在63岁突然心血来潮(被退休阿姨鼓动)去跑步,上来就可以在未经训练的情况下轻松跑完半马。她退休后,她的工作分给了4个人做,那4个人都喊累,单位领导很赏识她,希望退休返聘……

    但这主要是基因决定的,羡慕不来。

    研究者从上世纪30年代起就通过双胞胎研究发现睡眠的基因决定性[83] [84],这涉及多个时钟基因[85] [86] [87] [88]。有两项目较大的研究[89] [90]分别搜集了4.7万人和44.6万人的数据,发现人类有多个基因位点与睡眠时间有关:比如褪黑素受体基因rs-4753426和rs-7942988。

    人类的睡眠时间因人而异,呈正态分布[91],大多数人睡7-8小时左右每晚。

    图4

    所以,对于某些基因型、不需要夜间睡那么多、白天也精力充沛的人来说,中午健身基本上没问题;但是对于那些睡眠不足的人来说,中午健身可能不是个好的选择。

    此外,全球范围内肥胖的流行与睡眠时间缩短的趋势吻合[92] [93]。往轻了说,睡眠不足会通过多种方式导致肥胖[94] [95] [96] [97]:

  • 减少身体活动/疲劳/久坐/嗜睡[98];
  • 减少静息能量消耗[99][100][101][102][103];
  • 降低体温/减少产热减少能量支出[104][105];
  • 促进食欲激素ghrelin的分泌[106][107][108];
  • 抑制瘦素分泌[109][110][111][112][113][114];
  • 抑制脂肪燃烧[115]等;

    往重了说,睡眠不足会促进肥胖并发症发生[116] [117],包括癌症[118]、心肌梗死[119]、冠心病[120]、二型糖尿病[121]、抑郁症(自杀)[122]等,大幅度提高死亡风险[123]。保证睡眠(如)对上述所有健康隐患都有抵抗作用,所以,到底中午是睡觉还是健身,应当综合考虑个人的各方面情况。

    (也包括吃午饭的时间和吃法,正常饭后2-3小时内不适合剧烈运动,这是常识就不说了)。

    References

    1. abDinges DF. Napping patterns and effects in human adults. In: Dinges DF, Broughton RJ, editors. Sleep and alertness: chronobiological, behavioral, and medical aspects of napping. New York7 Raven Press; 1989. p. 171 – 204.

    2. Tune GS. Sleep and wakefulness in 509 normal human adults. Br J Med Psychol 1969;42: 75 – 80.

    3. Monk TH, Reynolds 3rd CF, Machen MA, et al. Daily social rhythms in the elderly and their relation to objectively recorded sleep. Sleep 1992;15(4):322 – 9.

    4. Buysse DJ, Monk TH, Reynolds 3rd CF, et al. Patterns of sleep episodes in young and elderly adults during a 36-hour constant routine. Sleep 1993;16(7):632 – 7.

    5. Blake MJF. Time of day effects on performance in a range of tasks. Psychonom Sci 1967;9: 349 – 50.

    6. Mitler MM, Carskadon MA, Czeisler CA, et al. Catastrophes, sleep, and public policy: consensus report. Sleep 1988;11(1):100 – 9.

    7. Hurdiel R, Riedy SM, Millet GP, et al. Cognitive performance and self-reported sleepiness are modulated by time-of-day during a mountain ultramarathon. Res Sports Med. 2018;26(4):482–489.

    8. Knechtle

    9. Poussel M, Laroppe J, Hurdiel R, et al. Sleep management strategy and performance in an extreme mountain ultra-marathon. Res Sports Med. 2015;23:330–336.

    10. Colquhoun WP. Circadian variations in mental efficiency. In: Colquhoun WP, editor. Biological rhythms and human performance. London7 Academic Press; 1971. p. 39 – 107.

    11. Craig A, Baer K, Diekmann A. The effects of lunch on sensory-perceptual functioning in man. Int J Occup Environ Health 1981;49:105 – 14.

    12. Campbell SS, Zulley J. Circadian distribution of human sleep/wake patterns during disentrainment. Sleep Research 1985;14:291.

    13. Carskadon MA, Dement WC. Multiple sleep latency tests during the constant routine. Sleep 1992;15(5):396 – 9.

    14. Broughton RJ. Chronobiological aspects and models of sleep and napping. In: Dinges DF, Broughton RJ, editors. Sleep and alertness: chronobiological, behavioral, and medical aspects of napping. New York7 Raven Press; 1989. p. 71 – 98.

    15. Lavie P. The 24-hour sleep propensity function (SPF): practical and theoretical implications. In: Monk TH, editor. Sleep, sleepiness and performance. Chichester, England7 John Wiley & Sons Ltd.; 1991. p. 65 – 93.

    16. Richardson GS, Carskadon MA, Orav EJ, et al. Circadian variation of sleep tendency in elderly and young adult subjects. Sleep 1982;5(Suppl 2):S82 – 94.

    17. Kleitman N. Sleep and wakefulness. Chicago7 University of Chicago Press; 1963.

    18. Colquhoun WP. Circadian variations in mental efficiency. In: Colquhoun WP, editor. Biological rhythms and human performance. London7 Academic Press; 1971. p. 39 – 107.

    19. Birbrair A., Zhang T., Wang Z.M., Messi M.L., Enikolopov G.N., Mintz A., Delbono O. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 2013;22:2298–2314.

    20. Lafontan M., Langin D. Lipolysis and lipid mobilization in human adipose tissue. PROG. Lipid Res. 2009;48:275–297.

    21. Jaworski K., Sarkadi-Nagy E., Duncan R.E., Ahmadian M., Sul H.S. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;293:G1–G4.

    22. Stob, N. R. , Bell C., van Baak M. A., and Seals D. R.. 1985. Thermic effect of food and beta‐adrenergic thermogenic responsiveness in habitually exercising and sedentary healthy adult humans. J. Appl. Physiol. 103(616–622):2007.

    23. Astrup, A. 1986. Thermogenesis in human brown adipose tissue and skeletal muscle induced by sympathomimetic stimulation. Acta Endocrinol. Suppl. (Copenh) 278:1–32.

    24. Staten

    25. Bell, C. , Stob N. R., and Seals D. R.. 2006. Thermogenic responsiveness to beta‐adrenergic stimulation is augmented in exercising versus sedentary adults: role of oxidative stress. J. Physiol. 570:629–635.

    26. Kleitman N, Jackson DP. Body temperature and performance under different routines. J Appl Physiol 1950;3:309 – 28.

    27. Naitoh P, Englund CE, Ryman DH. Circadian rhythms determined by cosine curve fitting: analysis of continuous work and sleep loss data. Behav Res Methods Instrum Comput 1985; 17(6):630 – 41.

    28. Brown EN, Czeisler CA. The statistical analysis of circadian phase and amplitude in constantroutine core-temperature data. J Biol Rhythms 1991;7(3):177 – 202.

    29. Timothy H. Monk, PhD, DSc.The Post-Lunch Dip in Performance.Clin Sports Med 24 (2005) e15 – e23

    30. Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1366.

    31. Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle.

    32. Huxley HE, Hanson J (1954) Changes in cross-striations of muscle during contraction and stretch and their structural implications. Nature 173:973–976.

    33. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction. Interference microscopy of living muscle fibres. Nature 173:971–973.

    34. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318.

    35. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65.

    36. Rayment I, Rypniewski WR, Schmidt-B?se K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58.

    37. Thorson J, White DC. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Biophys J. 1969 Mar;9(3):360–390.

    38. Wakabayashi K, Sugimoto Y, Tanaka H, Ueno Y, Takezawa Y, Amemiya Y. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J. 1994 Dec;67(6):2422–2435.

    39. R D Bremel, A Weber.Cooperation within actin filament in vertebrate skeletal muscle.Nat New Biol. 1972 Jul 26;238(82):97-101.

    40. D A Smith.The theory of sliding filament models for muscle contraction. III. Dynamics of the five-state model.J Theor Biol. 1990 Oct 21;146(4):433-66.

    41. B Brenner, M Schoenberg, J M Chalovich, L E Greene, E Eisenberg.Evidence for cross-bridge attachment in relaxed muscle at low ionic strength.Proc Natl Acad Sci U S A. 1982 Dec;79(23):7288-91.

    42. A M Gordon 1 , E B Ridgway, L D Yates, T Allen.Muscle cross-bridge attachment: effects on calcium binding and calcium activation.Adv Exp Med Biol. 1988;226:89-99.

    43. Kiisa Nishikawa 1 , Samrat Dutta 2 , Michael DuVall 2 3 , Brent Nelson 4 , Matthew J Gage 5 , Jenna A Monroy 6.Calcium-dependent titin-thin filament interactions in muscle: observations and theory.J Muscle Res Cell Motil. 2020 Mar;41(1):125-139.Epub 2019 Jul 9.

    44. B Brenner, E Eisenberg.The mechanism of muscle contraction. Biochemical, mechanical, and structural approaches to elucidate cross-bridge action in muscle.Basic Res Cardiol. 1987;82 Suppl 2:3-16.

    45. Xie L., Kang H., Xu Q., Chen M. J., Liao Y., Thiyagarajan M., O’Donnell J., Christensen D. J., Nicholson C., Iliff J. J., Takano T., Deane R., Nedergaard M., Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    46. Jessen N. A., Munk A. S., Lundgaard I., Nedergaard M., The glymphatic system: A beginner’s guide. Neurochem. Res. 40, 2583–2599 (2015).

    47. Fultz N. E., Bonmassar G., Setsompop K., Stickgold R. A., Rosen B. R., Polimeni J. R., Lewis L. D., Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).

    48. abMander BA, Santhanam S, Saletin JM, & Walker MP (2011). Wake deterioration and sleep restoration of human learning. Current biology, 21(5), R183–R184.

    49. Lau EYY, Wong ML, Lau KNT, Hui FWY, & Tseng CH (2015). Rapid-eye-movement-sleep (REM) associated enhancement of working memory performance after a daytime nap. PLoS one, 10(5), e0125752.

    50. Mednick S., Ehrman M. Take Nap! Change Your Life. Workman Publishing; New York, NY, USA: 2006.

    51. Lahl O., Wispel C., Willigens B., Pietrowsky R. An Ultra Short Episode of Sleep Is Sufficient to Promote Declarative Memory Performance. J. Sleep Res. 2008;17:3–10.

    52. Igloi K., Gaggioni G., Sterpenich V., Schwartz S. A Nap to Recap or How Reward Regulates Hippocampal-Prefrontal Memory Networks during Daytime Sleep in Humans. Elife. 2015;4:e07093.

    53. Kubo T., Takeyama H., Matsumoto S., Ebara T., Murata K., Tachi N., Itani T. Impact of Nap Length, Nap Timing and Sleep Quality on Sustaining Early Morning Performance. Ind. Health. 2007;45:552–563.

    54. Tietzel A.J., Lack L.C. The Short-Term Benefits of Brief and Long Naps Following Nocturnal Sleep Restriction. Sleep. 2001;24:293–300.

    55. Lovato N., Lack L. The effects of napping on cognitive functioning. In: Kerkhof G.A., van Dongen H.P.A., editors. Progress in Brain Research. Volume 185. Elsevier; Amsterdam, The Netherlands: 2010. pp. 155–166.

    56. Horne JA, Reyner LA. Counteracting driver sleepiness: effects of napping, caffeine, and placebo. Psychophysiology. 1996; 33(3): 306–309.

    57. Takahashi M, Arito H. Maintenance of alertness and performance by a brief nap after lunch under prior sleep deficit. Sleep. 2000; 23(6): 813–819.

    58. Tietzel AJ, Lack LC. The short-term benefits of brief and long naps following nocturnal sleep restriction. Sleep. 2001; 24(3): 293–300.

    59. Tietzel AJ, Lack LC. The recuperative value of brief and ultra-brief naps on alertness and cognitive performance. J Sleep Res. 2002; 11(3): 213–218.

    60. Brooks A, Lack L. A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative? Sleep. 2006; 29(6): 831–840.

    61. Travers J. Would You Like to Use a Sleep Pod at Work? [(accessed on 23 October 2019)]. Available online: https://www.labroots.com/trending/technology/7472/video-sleep-pod-work

    62. La Siestoune Jacques. [(accessed on 18 February 2020)]. Available online: http://www.lasiestoune.com/jacques

    63. Abdessalem R., Boukhris O., Hsouna H., Trabelsi K., Ammar A., Taheri M., Irandoust K., Hill D.W., Chtourou H. Effect of napping opportunity at different times of day on vigilance and shuttle run performance. Chronobiol. Int. 2019;36:1334–1342.

    64. Boukhris O., Abdessalem R., Ammar A., Hsouna H., Trabelsi K., Engel F.A., Sperlich B., Hill D.W., Chtourou H. Nap opportunity during the daytime affects performance and perceived exertion in 5-m shuttle run test. Front. Physiol. 2019;10:779.

    65. Hsouna H., Boukhris O., Abdessalem R., Trabelsi K., Ammar A., Shephard R.J., Chtourou H. Effect of different nap opportunity durations on short-term maximal performance, attention, feelings, muscle soreness, fatigue, stress and sleep. Physiol. Behav. 2019;211:112673.

    66. O’Donnell S, Beaven CM, Driller M. The influence of match-day napping in elite female netball athletes. Int J Sports Physiol Perform. 2018;13(9):1143–1148.

    67. Daaloul H., Souissi N., Davenne D. Effects of Napping on Alertness, Cognitive, and Physical Outcomes of Karate Athletes. Med. Sci. Sports Exerc. 2019;51:338–345.

    68. Waterhouse J., Atkinson G., Edwards B., Reilly T. The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation. J. Sports Sci. 2007;25:1557–1566.

    69. Hammouda O., Romdhani M., Chaabouni Y., Mahdouani K., Driss T., Souissi N. Diurnal napping after partial sleep deprivation affected hematological and biochemical responses during repeated sprint. Biol. Rhythm Res. 2018;49:927–939.

    70. Romdhani M., Souissi N., Chaabouni Y., Mahdouani K., Driss T., Chamari K., Hammouda O. Improved Physical Performance and Decreased Muscular and Oxidative Damage With Postlunch Napping After Partial Sleep Deprivation in Athletes. Int. J. Sports Physiol. Perform. 2020;1:1–10.

    71. Petit E., Mougin F., Bourdin H., Tio G., Haffen E. A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions. Eur. J. Appl. Physiol. 2014;114:305–315.

    72. Pelka M, Ferrauti A, Meyer T, et al. How does a short, interrupted recovery break affect performance and how is it assessed? A study on acute effects. Int J Sports Physiol Perform. 2017;12:S114–S1121.

    73. lanchfield AW, Lewis-Jones TM, Wignall JR, et al. The influence of an afternoon nap on the endurance performance of trained runners. Eur J Sport Sci. 2018;18(9):1177–1184.

    74. Ajjimaporn A, Ramyarangsi P, Siripornpanich V. Effects of a 20-min nap after sleep deprivation on brain activity and soccer performance. Int J Sports Med. 2020;41(14):1009–1016.

    75. Brotherton EJ, Moseley SE, Langan-Evans C, et al. Effects of two nights partial sleep deprivation on an evening submaximal weightlifting performance; are 1 h powernaps useful on the day of competition? Chronobiol Int. 2019;36(3):407–426.

    76. Hammouda O, Romdhani M, Chaabouni Y, et al. Diurnal napping after partial sleep deprivation affected hematological and biochemical responses during repeated sprint. Biol Rhythm Res. 2018;49(6):927–939.

    77. Romdhani M, Souissi N, Chaabouni Y, et al. Improved physical performance and decreased muscular and oxidative damage with postlunch napping after partial sleep deprivation in athletes. Int J Sports Physiol Perform. 2020;15(6):874–883.

    78. Blanchfield AW, Lewis-Jones TM, Wignall JR, et al. The influence of an afternoon nap on the endurance performance of trained runners. Eur J Sport Sci. 2018;18(9):1177–1184.

    79. Lastella M, Roach GD, Halson SL, Sargent C. Sleep/wake behaviours of elite athletes from individual and team sports. Eur J Sport Sci 2015; 15: 94–100

    80. Leeder J, Glaister M, Pizzoferro K, Dawson J, Pedlar C. Sleep duration and quality in elite athletes measured using wristwatch actigraphy. J Sports Sci 2012; 30: 541–545

    81. https://www.baidu.com/link?url=CE5JYI2Vs5tY57ZszSdHed-yQJ0GezYZ3m9q9E-e2-ZpTMmHSRTEbSFSIWIOSOr-aHUJuzW3E1PuxfzwOtiIsmJZFLMJvtUWqykzvbnJj2C&wd=&eqid=9e5ed6aa0019278d000000036303b81f

    82. https://www.baidu.com/link?url=LXLZUxKUBeLZxzIAmJ3-0dORdt9dM2uzdJYiomQHzBWeKPAalsdrBaYTUDtXnqNmFk-pb3mQe7zo5LSwY8gBLj_ryPhHaRX6yuRH8O45ABW&wd=&eqid=9e5ed6aa0019278d000000036303b81f

    83. Partinen M, Kaprio J, Koskenvuo M, Putkonen P, Langinvainio H. Genetic and environmental determination of human sleep. Sleep. 1983;6:179–85.

    84. Dauvilliers Y, Maret S, Tafti M. Genetics of normal and pathological sleep in humans. Sleep Med Rev. 2005;9:91–100.

    85. Lowrey PL, Takahashi JS.Mammalian circadian biology: elucidating genome-wide levels of temporal organization.Annu Rev Genomics Hum Genet5: 407–441, 2004.

    86. Sangoram AM, Saez L, Antoch MP, Gekakis N, Staknis D, Whiteley A, Fruechte EM, Vitaterna MH, Shimomura K, King DP, Young MW, Weitz CJ, Takahashi JS.Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCKBMAL1-induced transcription.Neuron21: 1101–1113, 1998.

    87. Schibler U (2005). The daily rhythms of genes, cells and organs. EMBO Rep 6, S9–S13.

    88. Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, Campbell KS, Arbogast S, Reid MB, Walker JR, Hogenesch JB, Takahashi JS & Esser KA (2010). CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci USA 107, 19090–19095.

    89. Dashti HS, et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat Commun. 2019;10:1100.

    90. Gottlieb DJ, et al. Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study. Mol Psychiatry. 2015;20:1232–9.

    91. Groeger JA, Zijlstra FRH, Dijk D-J. Sleep quantity, sleep difficulties and their perceived consequences in a representative sample of some 2000 British adults. J Sleep Res. 2004;13:359–71.

    92. Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011; 377:557–567.

    93. CDC. Unhealthy sleep-related behaviors – 12 States, 2009. MMWR Morb Mortal Wkly Rep. 2011; 60:233–238.

    94. Morselli L, Leproult R, Balbo M, Spiegel K. Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract Res Clin Endocrinol Metab. 2010; 24:687–702.

    95. T. Roenneberg, K. V. Allebrandt, M. Merrow, C. Vetter, Social jetlag and obesity. Curr. Biol.22, 939–943 (201 2).

    96. A. M. Spaeth, D. F. Dinges, N. Goel, Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. Sleep 36, 981–990 (2013).

    97. Nedeltcheva A.V., Scheer F.A. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2014;21:293–298.

    98. Schmid SM, Hallschmid M, Jauch-Chara K, et al. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr. 2009; 90:1476–1482.

    99. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. New England Journal of Medicine. 1995; 332(10):621–628.

    100. Rosenbaum M, Goldsmith R, Bloomfield D, et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest. 2005; 115(12):3579–3586.

    101. Landsberg L. Feast or famine: the sympathetic nervous system response to nutrient intake. Cell Mol Neurobiol. 2006; 26(4–6):497–508.

    102. Redman LM, Heilbronn LK, Martin CK, et al. Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss. PLoS One. 2009; 4(2):e4377.

    103. Ravussin E, Burnand B, Schutz Y, Jequier E. Energy expenditure before and during energy restriction in obese patients. Am J Clin Nutr. 1985; 41(4):753–759.

    104. Schmid SM, Hallschmid M, Jauch-Chara K, et al. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr. 2009; 90(6):1476–1482.

    105. Vaara J, Kyrolainen H, Koivu M, et al. The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature. Eur J Appl Physiol. 2009; 105:439–444.

    106. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. 1999. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    107. Masayasu Kojima, Kenji Kangawa.Ghrelin: structure and function.Physiol Rev. 2005 Apr;85(2):495-522.

    108. Schmid SM, Hallschmid M, Jauch-Chara K, et al. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res. 2008; 17:331–334.

    109. Morselli L, Leproult R, Balbo M, Spiegel K. Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract Res Clin Endocrinol Metab. 2010; 24:687–702.

    110. Pannain S, Miller A, Van Cauter E. Sleep loss, obesity and diabetes: prevalence, association and emerging evidence for causation. Obes Metab-Milan. 2008; 4:28–41.

    111. Spiegel K, Leproult R, L'Hermite-Baleriaux M, et al. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004; 89:5762–5771.

    112. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004; 141:846–850.

    113. Van Cauter E, Spiegel K, Tasali E, Leproult R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008; 9(Suppl 1):S23–S28.

    114. Mullington JM, Chan JL, Van Dongen HP, et al. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol. 2003; 15:851–854.

    115. Arlet V. Nedeltcheva, MD1, Jennifer M. Kilkus, MS2, Jacqueline Imperial, RN2, Dale A. Schoeller, PhD3, and Plamen D. Penev, MD, PhD.Insufficient sleep undermines dietary efforts to reduce adiposity.Ann Intern Med. 2010 October 5; 153(7): 435–441.

    116. Tatsuhiko Kubo 1 , Kotaro Ozasa, Kazuya Mikami, Kenji Wakai, Yoshihisa Fujino, Yoshiyuki Watanabe, Tsuneharu Miki, Masahiro Nakao, Kyohei Hayashi, Koji Suzuki, Mitsuru Mori, Masakazu Washio, Fumio Sakauchi, Yoshinori Ito Takesumi Yoshimura, Akiko Tamakoshi.Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan collaborative cohort study.Am J Epidemiol. 2006 Sep 15;164(6):549-55.

    117. Y Liu, H Tanaka, The Fukuoka Heart Study Group.Overtime work, insufficient sleep, and risk of non-fatal acute myocardial infarction in Japanese men.Occup Environ Med 2002;59:447–451.

    118. Kakizaki M, Inoue K, Kuriyama S, et al. Sleep duration and the risk of prostate cancer: the Ohsaki Cohort Study. Br J Cancer. 2008;99:176–8.

    119. Y Liu, H Tanaka, The Fukuoka Heart Study Group.Overtime work, insufficient sleep, and risk of non-fatal acute myocardial infarction in Japanese men.Occup Environ Med 2002;59:447–451.

    120. Lao X.Q., Liu X., Deng H., Chan T., Ho K.F., Wang F., Vermeulen R., Tam T., Wong M.C., Tse L.A., et al. Sleep quality, sleep duration, and the risk of coronary heart disease: A prospective cohort study with 60, 586 adults. J. Clin. Sleep Med. 2018;14:109–117.

    121. Lou P., Chen P., Zhang L., Zhang P., Yu J., Zhang N. Relation of sleep quality and sleep duration to type 2 diabetes: A population-based cross-sectional survey. BMJ. 2012;2:e000956.

    122. Leary K.O., Bylsma L.M., Rottenberg J., Leary K.O., Bylsma L.M., Why J.R. Why might poor sleep quality lead to depression? A role for emotion regulation regulation. Cogn. Emot. 2016;31:1698–1706.

    123. Crowley K. Sleep and sleep disorders in older adults. Neuropsychol. Rev. 2011;21:41–53.

  • 赞(0)

    评论 抢沙发

    • 昵称 (必填)
    • 邮箱 (必填)
    • 网址

    饭游网